domingo, 27 de septiembre de 2009

Solución cubo de Rubik 4x4_Segunda parte

Actualización 22 de mayo: Pocos días después de publicar esta doble entrada, recibí un par de correos privados solicitándome el método en un archivo imprimible (lo cual me honra bastante, dicho sea de paso). Ya lo tengo acabado, así que, si alguien más está interesado, que me lo haga saber y estaré encantado de enviárselo por correo electrónico.
Habíamos dejado la primera parte de este tutorial, justo al finalizar el punto 1: cómo resolver los centros de caras. Así que lo retomamos con el punto 2.

2.- Emparejar las aristas.

Las piezas de arista son aquellas que no son ni esquinas, ni centros, y con los algoritmos propuestos en este paso, conseguiremos emparejar las piezas de arista idénticas entre sí por sus colores. En el cubo 4x4 hay dos de cada par de colores, es decir, dos piezas [blanca-naranja], dos piezas [roja-azul], dos piezas [verde-roja], y así sucesivamente. Pero no existen, evidentemente, piezas de arista formadas por colores de caras opuestas: ni la [verde-azul], ni la [rojo-naranja] ni la [blanca-amarilla]. El resto de combinaciones de color se reparten entre los doce pares de aristas que forman el cubo 4x4.

¡IMPORTANTE! LAS PIEZAS DE ARISTA DE COLOR NEGRO SE SEPARARÁN AL APLICAR LOS ALGORITMOS, POR LO QUE TENDREMOS CUIDADO DE NO COLOCAR EN ESA POSICIÓN ARISTAS YA EMPAREJADAS.

Aplicando cualquiera de los algoritmos anteriores, siempre se ven afectadas tres aristas. En los dos primeros y en el último, serán ^LF, ^FR y ^UF. Y en los dos siguientes, ^BL, ^FR y ^UF. También os habréis fijado que el par de aristas elegidas para ser emparejadas, pueden encontrarse en más posiciones que las que os propongo, por ejemplo una en la arista ^FR y la otra en la arista ^BU. Desde todos los pares de posiciones donde se os ocurra colocar las aristas, llegaríamos a cualquiera de las anteriores girando simplemente un par de capas, sin deshacer los centros de cara que ya tenemos solucionados. Concretamente, en el ejemplo anterior podríamos llevar la pieza situada en ^BU hasta la arista ^FL aplicando el algoritmo [U L]. Y si tuviésemos que llevarla hasta la arista ^BR, aplicando [B'] lo habríamos logrado.

Pero podemos mejorar los algoritmos anteriores. Mirad cómo: sabemos que al aplicar cualquiera de los anteriores algoritmos, se verán alteradas tres aristas, o bien el grupo [^LF, ^FR, ^UF], o bien el [^BL, ^FR y ^UF]. Aprovechando este "daño colateral" que afecta principalmente a las piezas situadas en ^UF, y sabiendo qué pieza colocar en dicha arista, conseguiremos que, aplicando un sólo algoritmo, se emparejen dos aristas simultáneamente. Para explicarlo, vamos a llamar arista principal a las piezas gemelas que pretendemos emparejar ([verde-amarilla] en todos los ejemplos), y arista secundaria ([azul-amarilla] en todos los ejemplos) a la arista que se resolverá "de propina" al aplicar el algoritmo adecuado. Tras colocar las dos piezas que formarán la arista principal en su posición correcta en las aristas ^LF y ^FR, miramos cuál es la otra pieza de arista que forma la arista ^LF junto a la [verde-amarilla], y que en las figuras es la [azul-amarilla]. Buscamos su gemela y la llevamos hasta la arista ^UF. Si al mirar la cara F, los colores de las piezas que formarán la arista secundaria coinciden (color azul en las imágenes), aplicaremos uno de los dos algoritmos siguientes:

En el caso de que al mirar la cara F, los colores de las piezas que formarán la arista secundaria no coincidan, aplicaremos uno de los algoritmos siguientes, el que corresponda según nuestro caso. La diferencia con el caso anterior está en que la pieza situada en la arista ^UF presenta su color amarillo en la cara F, y no coincide con el color azul de su compañera gemela que forma parte de la arista ^LF.

Aplicando una y otra vez alguno de los algoritmos propuestos (en el caso más desfavorable, podríamos llegar a necesitar diez), llegará un momento que sólo tendremos dos aristas sin emparejar. Pensaréis, con razón, que tenemos un problema, ya que todos los algoritmos descolocan tres aristas, las dos donde se encuentran las piezas de arista que queremos emparejar, más la tercera (piezas representadas con color negro en las imágenes anteriores), que podríamos considerar un "daño colateral" de los algoritmos. La forma de resolver las dos última aristas la encontraréis en las imágenes siguientes:

El resultado de la correcta aplicación de los algoritmos hará que nuestro cubo tenga un aspecto similar al de la figura inferior, con los centros de cara resueltos y colocados en su lugar (muy importante!!), y las aristas emparejadas, aunque descolocadas. Sólo nos queda enfrentarnos a las piezas de esquina.


3.- Aplicar algoritmos cubo 3x3.

Si os fijáis, al tener resueltos los centros de cara correctamente, y las aristas emparejadas, podríamos asimilarlo a un cubo 3x3: los centros fijos del cubo original, se corresponden con nuestros centros de cara, y están formados por cuatro piezas del mismo color, mientras que las aristas individuales del cubo 3x3, en el nuestro lo forman dos piezas pareadas idénticas. Hemos llegado al momento en el que podemos empezar a solucionar nuestro cubo 4x4 como si se tratara de un cubo 3x3, con el método que cada uno domine, con el cuidado necesario para no deshacer ni los centros de cara ni las aristas emparejadas. La imagen inferior aclara, por si hubiera alguna duda, qué es lo que pretendemos. Y por si hubiera alguien tan demente como para estar intentando aprender a resolver el cubo 4x4 sin saber cómo se soluciona el cubo 3x3, siguiendo este enlace os podéis descargar el famoso tutorial en .pdf que microsiervos publicó en su día.


4.- Solucionar paridades.

Según he podido leer en Rubikaz, que de esto saben muchísimo más que yo, sólo en uno de cada cuatro casos podremos resolver el cubo 4x4 aplicando exclusivamente algoritmos propios del cubo 3x3. En uno de cada dos casos nos encontraremos con una sola arista invertida, es decir, bien colocada pero mal girada. Y también en uno de cada dos casos llegaremos a un punto en el que todas las piezas están en su sitio y correctamente giradas, salvo dos esquinas (y un caso de dos aristas), que tendremos que intercambiar entre sí. Son los conocidos como casos de paridad, y nunca podrían aparecer en el cubo 3x3. Vamos a explicar cómo resolverlos.

El primer caso de paridad que vamos a estudiar es el de una arista girada. Y de paso, os cuento porqué sucede. No sé si habéis intentado alguna vez girar (sin descolocar) una única pieza en el cubo 3x3. El cubo completamente resuelto excepto una esquina o una arista girada. Si no lo habéis probado, ya os digo que no perdáis el tiempo, porque resulta imposible. Es una particularidad del cubo de Rubik: el giro de una pieza implica, obligatoriamente, que al menos otra girará también. Por lo tanto, sería imposible encontrarnos en el cubo 3x3 una única esquina invertida. Pero en el cubo 4x4, como las aristas están compuestas de dos piezas, sí podría darse el caso de que ambas estén giradas simultáneamente, apareciendo como en la imagen inferior, y obligándonos a aprendernos el algoritmo más complicado de todo el método.

El segundo caso de paridad a la que tarde o temprano tendremos que enfrentarnos, hace que nos encontremos dos piezas que han intercambiado sus posiciones correctas. Para colocarlas correctamente, es fundamental conocer el sencillo algoritmo de la siguiente imagen. Notaréis que al aplicarlo, lo que conseguimos realmente es que las aristas ^UF y ^BU intercambien sus posiciones (y de hecho es el mejor algoritmo a aplicar en el caso de encontrarnos dicha posición), pero es un paso previo inevitable para lograr colocar correctamente las piezas que provocan esta paridad.

Ahora sí, los algoritmos completos para solucionar los tres casos posibles de esta paridad, en el que han intercambiado sus posiciones correctas dos esquinas adyacentes, dos esquinas en diagonal o dos aristas adyacentes. Desde la posición de paridad a la que nos enfrentemos, aplicaremos el anterior algoritmo, con el que nuestro cubo pasará a tener el aspecto de la imagen colocada a la derecha de la de partida. Seguimos justo debajo, tomando esta posición como punto de partida, y aplicamos el algoritmo correspondiente, lo que nos conducirá a la deseada posición de cubo totalmente terminado.

¿Lo habéis conseguido? ¿Ya habéis aprendido a resolver el cubo 4x4, muy apropiadamente conocido también como Rubik's Revenge (la venganza de Rubik)? ¿He tenido yo algo que ver con vuestra victoria frente al maligno invento? Si es así, objetivo cumplido. Próxima entrega: cubo de Rubik 5x5, "El cubo del Profesor". En cuanto me lo compre, aprenda a resolverlo y dibuje las imágenes para explicar el método, me pongo con el post...

Fuentes: Rubikaz, microsiervos,

16 comentarios

Francisca dijo...

:O!!!!
que locura!!!
Saludos!
Fran :)
http://largavidaalblog.blogspot.com/

Josete dijo...

Te puedes creer que hace 25 años lo hacía en dos o tres minutos, incluso formando el famoso huevo en el centro. Y ahora con plano y todo me vuelco loco. Las neuronas no perdonan.

Suso dijo...

Hola Francisca!!

Pues sí, no te voy a mentir: un poco locura sí que es!!!

El cubo original, el 3x3 es mucho más simple de resolver. El de 4x4 es para quien domina el 3x3. No conviene empezar con este...

Un abrazo!!

Suso dijo...

Hola Josete!!

Busca en tu 'baúl' el viejo cubo de 3x3, y si hace 25 años sabías resolverlo, en un par de horas te pones al día, seguro... Y si necesitas las instrucciones, en estas entradas hay un enlace a un .pdf que publicó microsiervos en su momento, y que está bastante, bastante bien explicado...

Y si te animas a hacerte con el de 4x4, ya sabes dónde mirar las soluciones...

Un abrazo!!

ccbaxter dijo...

23 años después del 3x3, ¡conseguido! Gracias

Suso dijo...

Hola, ccbaxter!!

Pues de nada por la parte que me toca, pero el mérito es tuyo!! Así que, enhorabuena...

Estoy preparando un tutorial similar para el cubo 5x5... Cuando lo tenga, lo postearé...

Un saludo!!

Asux24 dijo...

Hola de nuevo Suso. Muchas gracias por el aporte, gracias a tu manuales consegui mejorar mucho mi tiempo en el 3x3 y me lance a la aventura de hacerme con un 4x4. Lo solucione un par de veces con metodos un poco modificados del 3x3 pero no me salia siempre (ya he leido que solo sale en 1 de cada 4 veces). ¿Me podrias pasar el imprimible si es que lo tienes a jordi.t@live.com?

Muchas gracias y un saludo.

PD: Estoy a la espera de conseguir el 5x5 y de ver ese manual que sacas que seguro que sera digno de alabanza.

Anónimo dijo...

jack can be just as much fun at home as it is in a physical casino. [url=http://www.journalonline.co.uk/christian-louboutin-outlet.html]http://www.journalonline.co.uk/christian-louboutin-outlet.html[/url] Jack LaLanne did. Known as the Godfather of Fitness, LaLanne [url=http://www.journalonline.co.uk/tory-burch-outlet.html]http://www.journalonline.co.uk/tory-burch-outlet.html[/url] will always stay sharp, especially if youre carving more than [url=http://www.journalonline.co.uk/ralph-lauren-outlet.html]Ralph Lauren Outlet[/url] His spontaneity and unpredictable nature are what makes him
through innovative pharmacy benefit management, and the use of [url=http://www.journalonline.co.uk/ralph-lauren-outlet.html]http://www.journalonline.co.uk/ralph-lauren-outlet.html[/url] David: Im a homeschool dad, so I know the life of a homeschooler. [url=http://www.journalonline.co.uk/ralph-lauren-outlet.html]Ralph Lauren Outlet[/url] homeschool community. Families will find a wealth of information [url=http://www.journalonline.co.uk/christian-louboutin-outlet.html]http://www.journalonline.co.uk/christian-louboutin-outlet.html[/url] look, you can easily find examples online, at specialty stores
in digital design. He is responsible for the website user [url=http://www.journalonline.co.uk/christian-louboutin-outlet.html]christian louboutin outlet[/url] additionally try to find missed the need for stitches around the [url=http://www.journalonline.co.uk/tory-burch-outlet.html]http://www.journalonline.co.uk/tory-burch-outlet.html[/url] which seat they take. It does not improve their chances to be [url=http://www.journalonline.co.uk/christian-louboutin-outlet.html]http://www.journalonline.co.uk/christian-louboutin-outlet.html[/url] as the particular smallest specifics of the need for stitches.

Anónimo dijo...

Por si te interesa aqui tienes un programa que te muestra gráficamente la solución al cubo de rubik, además puedes ver un cubo en 3D que te va mostrando paso a paso la solución.
http://delphimagic.blogspot.com.es/2011/06/solucion-del-cubo-de-rubik-con-delphi.html

Daniel dijo...

Hola, yo te he dejado un mensaje en el otro tutorial que en principio me gusta y entiendo un poco mas.
Contestame por favor en el otro, o si lo prefieres, te escribo aqui mi pregunta.
Gracias

Juan Carlos dijo...

Hola.

Supongo que es un poco tarde pero me gustaría recibir el archivo pdf.
Y mi mas sincera enhorabuena por el articulo.

cobosjuancarlos(arroba)gmail.com

Juan Carlos dijo...

Supongo que un poco tarde pero me gusatria recibir el fichero PDF.

cobosjuancarlos(arroba)gmail.com

Enhorabuena por el articulo.

Gracias

Anónimo dijo...

Excelente trabajo. Me interesa el tutorial para imprimir. Agradeceria me hicieras el favor de mandarmelo.
j.andres_522@hotmail.com

Anónimo dijo...

Hola excelente tutoriales pero no se si aun tengas la versión imprimible. Saludos. humberto100001 @hotmail.con muchas gracias de antemano

SpacemanXZ dijo...

Hola Suso gracias de nuevo por otro gran tutorial, me falta resolver la paridad en las que dos esquinas opuestas en la ultima capa no estan bien colocadas xD.

Me vendría perfecto que me pasaras el imprimible a mi correo:

spacemanxz@gmail.com

Muchas gracias por todo!!

Anónimo dijo...

Hola! Me ha servido pero tengo un caso muy raro que no se como resolver : en la cara azul tengo 1,2,3,4,5,6,7,9,10,11,13 y 16 armados y debo permutar12 y 14, me puedes ayudar? PD.: eso mismo lo tengo en la cara naranja

Related Posts with Thumbnails