sábado, 6 de junio de 2009

"¡Eureka!", dijo Arquímedes...

La leyenda cuenta que Arquímedes saltó de la tina donde se estaba dando un baño, y, emocionado, salió desnudo a la calle gritando "¡Eureka!" ("¡Lo he encontrado!"). La famosa anécdota ha llegado hasta nuestros días gracias a la obra de Vitrubio, ya que no aparece mencionada en ninguno de los trabajos conocidos del genio de Siracusa. Los acontecimientos que llevaron a Arquímedes a interrumpir su baño fueron estos:

Hierón II, gobernador de Siracusa, había encargado una corona triunfal de oro macizo. Sospechando que el orfebre había empleado también plata en su elaboración, le encargó a Arquímedes que descubriera si había sido engañado, pero sin dañar la corona. Mientras se bañaba, observó cómo el nivel del agua subía a medida que su cuerpo se sumergía, cayendo en la cuenta de que el volumen de líquido desalojado coincidía con su volumen corporal. Por lo tanto, al sumergir la corona, ésta desplazaría una cantidad de agua igual a su propio volumen. Conociendo este dato, y dividiendo el peso de la corona entre su volumen, se obtiene la densidad de la corona, que debe coincidir con la densidad del oro, siempre que en su composición no se empleara ningún otro metal, ya que su densidad en ese caso sería diferente.

Arquímedes pensativo, de Domenico Fetti (1620)

Personalmente, dudo que el volumen de agua desalojada pudiera calcularse con la suficiente exactitud como para emitir una conclusión totalmente fiable. Arquímedes podría haber buscado la solución en el principio de la hidrostática descrito en su tratado Sobre los cuerpos flotantes, conocido como el principio de Arquímedes: un cuerpo total o parcialmente sumergido en un fluido estático, será empujado con una fuerza ascendente igual al peso del volumen de fluido desplazado por dicho objeto. Usando este principio, habría sido posible comparar la densidad de la corona dorada con la de oro puro al usar una balanza. Situando en un lado de la balanza la corona a investigar y en el otro una muestra de oro puro del mismo peso, se procedería a sumergir la balanza en el agua. Si la corona tuviese menos densidad que el oro, desplazaría más agua debido a su mayor volumen y experimentaría un mayor empuje que la muestra de oro. Esta diferencia de flotabilidad inclinaría la balanza de la manera que podéis ver en la animación:


Una vez dicho esto, os lanzo la siguiente pregunta: estamos en un estanque a bordo de una barca, dentro de la cual hay una piedra. Si lanzamos la piedra al agua, ¿qué ocurriría con el nivel del agua si fuésemos capaces de medir su variación?

Fuentes: wikipedia uno, dos y tres.

30 comentarios

Logio dijo...

Pues que el nivel de agua aumentaría coincidiendo con el volumen de la piedra, ¿o no? ¿o ya ha aumentado cuando se cargó en la barca?.

Buen fin de semana.

SUSO dijo...

Hola Logio. Siempre madrugador!!

Por ahí van los tiros...

Dejamos un rato más, a ver si hay algún comentario más, y publico la respuesta y el porqué, que es lo interesante...

Un saludo

Http 501 dijo...

Nada, o casi nada puesto la piedra en la barca y la barca por si sola ya desplaza un volumen de agua que se equilibra al hecharla piedra al agua.

Vamos digo yo ( que de estas cosas soy peor,no malo).

Buen finde!^^

SUSO dijo...

Hombre, Http, la diferencia entre "nada" y "casi nada" es bastante significactiva.
Si te decantas hacia el "casi nada", significa que la piedra desplaza diferente cantidad de agua, aunque sea poca... Y hasta aquí puedo leer...
Un saludo!!

Anónimo dijo...

Hola Suso. Soy nuevo en esto. Y hace miles de años que estudie física. La respuesta creo que es que al lanzar la piedra desplazará mas volumen de agua, porque dentro de la barca, solo desplaza el volumen que exista bajo la linea de flotación (al no estar completamente sumergido en el liquido, no puede ser igual el volumen del objeto con el del liquido desplazado) En fin es solo un comentario para que supieras que tienes otro seguidor mas. Me lo contó una amiga y ya te tengo entre mis lecturas semanales. Un fuerte saludo.

SUSO dijo...

Hola Anónimo.
Primero, gracias por tus palabras y por tu seguimiento (ya me dirás quién es esa amiga que me recomendó...)
Segundo: aunque mi respuesta no coincide con la tuya, no vas muy desencaminado, y coincidimos en algunas apreciaciones...
Después de comer, la publico en un comentario y la discutimos...
Un saludo!!

Anónimo dijo...

Buenas tardes Suso. Me llamo Francisco. Como ya he dicho antes no tengo ni idea de esto, así que no se como ponerme una identidad aquí para que al menos salga el nombre en los comentarios. Comentarte que la amiga es de la Ciudad de la Alhambra, y que me envió los datos de este blog cuando se te dió el premio al ídem mas interesante. Asi que el primer post que vi tuyo fue el relativo al kakuro. Cuando el siguiente post ha sido del graffitero de Granada, pues me ha sorprendido gratamente, ya que veo que te acercas por esta Ciudad o tienes muy buenos amigos aqui. Saludos y espero la respuesta con impaciencia.

Max Birrax dijo...

Yo voto porque por el hecho de subirla en la barca, la piedra ya ha desplazado su volúmen (ay, madre).

¡Saludos!

SUSO dijo...

Pues no lo dejamos para mañana.

La pregunta era esta: arrojo una piedra por la borda de una barca a un estanque. Si pudiera medirlo, ¿qué pasará con el nivel del agua?

La respuesta es que el nivel del estanque descenderá. Y esto ocurre así porque la piedra en el fondo del estanque desaloja su volumen de agua, mientras que estando en la barca desaloja su peso.

Como la densidad de la piedra es superior a la del agua, aproximadamente el doble, la piedra en la barca desaloja el doble de agua que cuando está en el fondo.

Da igual si la piedra está por encima o por debajo de la línea de flotación (http!!). Imagina que toda la piedra está por encima de dicho dicha línea... ¿no se vería afectada la profundidad que la barca se introduce en el agua? Por supuesto que sí.

Bueno, ha sido entretenido, ¿no creéis? Un saludo a todos por "mojaros".

SUSO dijo...

Por cierto Francisco.
Lo mismo hasta nos conocemos, o al menos a tu amiga. Ahora llevo unos añitos (casi siete!!) en Murcia, pero hasta 2002 estuve viviendo en GranHada, estudiando, currando y bicheando...
Doce años inolvidables!! De vez en cuando me dejo caer, aunque ahora con Albita, cada vez menos...
AYYY MI REALEJO!!!
Un saludo!!

chk dijo...

He llegado a la misma conclusion,desciende el nivel del agua,pero no por mis conocimientos en fisica,si no porque he visto salir del estanque a un buzo arrascandose la cabeza .
(chiste facil ,sin mala intencion,) para la tarde del sabado

Anónimo dijo...

akiiiiiiiiiiiiii

SUSO dijo...

¡¡¡Qué malo, chk!!! Una sonrisilla para la tarde (noche) del sábado, que no viene mal...
Te espero en el siguiente post con otro mejor, eh??
Un saludo

SUSO dijo...

PAKO!!!
Ya sé que estás AKIII, pero estírate un poco más, gañán!!!
Tenenmos que vernos, a ver si esta semana saco un rato de donde sea...
No seas malo!!!

Http 501 dijo...

Bueno,no me aclaro con esto de la piedra.( ni me acalarare, la física no va conmigo).pd: si, he leído la solución y aún lo estoy "procesando"...

¿Acaso alguien conoce la opinión de la piedra?

Por lo que respecta al feed, me tiré 2 horas para aprender como se configuraba todo ese embrollo y ponerlo en el blog, así que como falle tiro el pc por la ventana.=)

pd: por lo que respecta la música de Mozart, me encanta, tanto como kiss,rammstein, kraftwerk o como manolo escobar... digamos que me gusta el 99% de la música existente.

Disfruta el domingo!^^

Max Birrax dijo...

¿Ves? Lo que yo decía... :D

¡Saludos! ;)

SUSO dijo...

A ver, http, lo contamos con otras palabras hasta que lo veas claro...

Mientras la piedra está en la barca, se desaloja un volumen de agua. ¿Cuánto?: el peso de la piedra. Si esta pesa 50 kg, el agua desalojada es 50 litros (la densidad del agua es 1 kg/dm3, y un dm3 es un litro).

Cuando arrojamos la piedra por la borda, el volumen de agua desalojada yo no depende del peso de la piedra, sino de su volumen, según el principio de Arquímedes. Un piedra de 50 kg (cuya densidad es, más o menos, 2 kg/dm3) ocupa un volumen de 25 dm3 (25 litros), y ese es el volumen de agua desalojada.

Por lo tanto, el nivel de agua, al tirar la piedra por la borda, descenderá, porque mientras la teníamos en la barca, el nivel de agua subía lo correspondiente a 50 litros de agua desalojada. Al mandarla al fondo, el nivel de agua sólo subirá hasta el nivel de 25 litros de agua desalojada...

¿Ahora mejor? Y si no, me alquilo una barca, me busco una piedra y un estanque, lo grabo y lo subimos al blog... ;)

Un saludo

SUSO dijo...

¡Eres un cachondo, Max!!

¿Así discutías en las revisiones de los exámenes cuando te habían puesto un 4,5?

Un saludo!!

Chusta Ai dijo...

¡Oye, muy interesante! Pero yo tengo otra pregunta... ya sabemos qué pasa si estamos en la barca y echamos un piedra, pero... ¿y si echamos un cigarrito, maestro?

:-) power!!

SUSO dijo...

Ese Chute bueno!! Cómo me alegra verte por aquí!!

Pues me lo pones muy fácil: echamos un cigarrito y le añadimos la piedra...

¿Cómo lo ves?

Emiliano Orlando dijo...

Sip, un groso Arquimedes..

Por cierto, tu blog esta muy bueno, ya estás en mis favoritos!

E.O.

Chusta Ai dijo...

¡Una vez más has dado en el clavo!

¡Un abrazo, artista!

Http 501 dijo...

Ya lo entiendo.-.-'

Considero una buena idea lo de la barca.

^^

1 saludo.

álvaro snb dijo...

muy curioso este razonamiento del pricipio de arquímedes suso. la verdad es que pensé que el nivel del lago no cambiaría a pesar de mis 11 añitos matriculados en física... eso sí respecto a piedras con cigarritos si que me defiendo mejor jeje.
un saludo
álvaro

eL_eMiLio dijo...

A partir del cuarto comentario, y viendo lo interesante que se ponía la cosa, he decidido bajar al final del tirón y escribir mi respuesta (porque qué sentido tiene hacer crucigramas mirando las soluciones...?).

El conjunto barca-persona-piedra tiene una masa (la que sea) que provoca un desalojo de agua (o aumento de nivel) en el estanque debido al volumen del "suelo" de la barca que está por debajo del nivel de agua. Si eliminamos la piedra de ese conjunto, la masa de éste será menor que la que tenía antes, lo que provocará que la barca se hunda menos. Si referenciamos el sistema de coordenadas al nivel del estanque, tal y como preguntas, en ese momento sin piedra el nivel del estanque disminuirá.

La duda está ahora en el momento en que la piedra se sumerge. ¿Desaloja más volumen de agua la piedra estando fuera de ella, debido a su masa, o estando dentro de ella, debido a su volumen ? Pues así, a bote pronto, se me ocurre que si por ejemplo tuvieramos un objeto de un volumen insignificante en la barca, pero de una masa bestial (¿sabéis éso que come "Mordisquitos", el de Futurama?) desalojaría mucha más agua debido a su peso en la barca, sin sumergir, que a su insignificante volumen una vez sumergido.

Y ahora, la respuesta-chascarrillo que se oye en todas las bibliotecas: "Faltan datos para resolver el problema", jeje. Bueno, faltan datos para saber cuál va a ser la diferencia entre un estado (conjunto con piedra) y el otro (conjunto sin piedra-piedra sumergida), porque no sabemos las densidades, pero en cualquier caso, el nivel del estanque disminuirá :)

Y ahora sí, a ver la solución (que digo yo que después de 24 comentarios, la habrás publicado, no, cabrón?).

Besotes, brother!!!!

eL_eMiLio dijo...

Bueno, a la vista de tus comentarios, la genética también se merece un post ... =B-D

Y perdón por la parrafada...

Más besos!!

PD: Anónimo (Francisco, de Granada), para publicar con un nombre, hay un apartado justo debajo de la ventana donde escribes los comentarios que pone "ELEGIR UNA IDENTIDAD". Clickas en "Nombre/URL", y en el campo "Nombre" te pones lo que quieras. Y si tienes una web, un blog, o lo que quiera diox que empiece por http://, también la puedes puedes poner en el campo "URL".

Salutem!

SUSO dijo...

Álvaro... tío... ¿11 años de física??? Y te ha servido para saber más de "química", eh??? ;)
Un abrazo!!

SUSO dijo...

Brother. Me alegro por la genética y por la suerte que tienes compartiendo la misma que yo... ;))
Bueno, es cierto que faltaban datos, pero imaginé que la densidad de la piedra todos la tamarían como superior a la del agua... De todas formas, en un comentario sí aporté el dato (2 Kg/dm3). La verdad es que tu empleo del alimento de "mordisquitos" como analogía es el mejor que se me puede ocurrir... no sé cómo no lo empleé, porque clarifica bastante. Así que todos los que leáis este comentario por estar suscrito a los seguimientos... ESE ES MI HERMANO!!
Un saludo

Anónimo dijo...

Bueno,¿y la corona era de oro y plata,o solo de oro?¿sirvió el principio de Arquímedes como chivatazo?...cada cuál con sus curiosidades)...A estas horas,leyendo coscorrones....es que llevo tanto atraso...

Suso dijo...

Hola Anónimo!

Pues tienes razón: en la entrada no se cuenta el desenlace!! He mirado en la wikipedia y tampoco lo aclara, pero por lo que yo recuerdo de mi época de estudiante, la corona era falsa, y se demostró gracias al prinicipio de Arquímedes. Pero no contenía plata, sino otro metal menos noble... Ah! Y el rey tomó represalias contra el pobre orfebre... supongo que lo mandó ejecutar!!

Por cierto... ¿tienes alguna opinión acerca de la pregunta que hago al final del post?

Un saludo!!

Related Posts with Thumbnails